Motion Key-Frame Extraction by Using Optimized t-Stochastic Neighbor Embedding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion Key-Frame Extraction by Using Optimized t-Stochastic Neighbor Embedding

Key-frame extracting technology has been widely used in the field of human motion synthesis. Efficient and accurate key frames extraction methods can improve the accuracy of motion synthesis. In this paper, we use an optimized t-Stochastic Neighbor Embedding (t-SNE for short) algorithm to reduce the data and on this basis extract the key frames. The experimental results show that the validity o...

متن کامل

Key Frame Extraction from Motion Capture Data by Curve Saliency

We propose a new method for extracting key frames from a motion capture sequence. Our proposed approach consists of two steps. In the first step, we propose a new metric, curve saliency, for motion curves that specifies the important frames of the motion. In the second step, we detect the final key frames by clustering the computed important frames. As a result of our experimental results, on t...

متن کامل

Hierarchical Stochastic Neighbor Embedding

In recent years, dimensionality-reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade-off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embe...

متن کامل

Stochastic Neighbor Embedding

We describe a probabilistic approach to the task of placing objects, described by high-dimensional vectors or by pairwise dissimilarities, in a low-dimensional space in a way that preserves neighbor identities. A Gaussian is centered on each object in the high-dimensional space and the densities under this Gaussian (or the given dissimilarities) are used to define a probability distribution ove...

متن کامل

Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier Detection

Abstract. Analyzing high-dimensional data poses many challenges due to the “curse of dimensionality”. Not all high-dimensional data exhibit these characteristics because many data sets have correlations, which led to the notion of intrinsic dimensionality. Intrinsic dimensionality describes the local behavior of data on a low-dimensional manifold within the higher dimensional space. We discuss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2015

ISSN: 2073-8994

DOI: 10.3390/sym7020395